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Using a variety of flow-visualization techniques, the flow behind a circular cylinder 
has been studied. The results obtained have provided a new insight into the vortex- 
shedding process. Using time-exposure photography of the motion of aluminium 
particles, a sequence of instantaneous streamline patterns of the flow behind a 
cylinder has been obtained. These streamline patterns show that during the starting 
flow the cavity behind the cylinder is closed. However, once the vortex-shedding 
process begins, this so-called ‘ closed’ cavity becomes open, and instantaneous 
‘alleyways’ of fluid are formed which penetrate the cavity. I n  addition, dye experi- 
ments also show how layers of dye and hence vorticity are convected into the cavity 
behind the cylinder, and how they are eventually squeezed out. 

1. Introduction 
The earliest recorded observation of the phenomenon of vortex shedding can be 

traced back to the sixteenth century when Leonard0 da Vinci made drawings of the 
surface pattern of the fluid flow past an obstacle (see Popham 1946). It is surprising, 
but true, that  up until now very little has been understood about the formation of 
vortices that accompany the flow past two- or three-dimensional bluff bodies. The 
investigation of vortex shedding is important in aerodynamic drag, structural 
vibration and turbulent mixing. 

Over the years, both experimental and theoretical studies have been carried out 
by various research workers into the nature of vortex shedding. Extensive reviews 
of this topic have been given by Wille (1960, 1966)) Morkovin (1964)) Mair & Maul1 
(1971)) Berger & Wille (1972), and more recently by Bearman & Graham (1980). 

The present authors believe that a deep insight into the mechanism of vortex 
shedding can be obtained by studying the instantaneous streamline patterns a t  
various phases of the vortex-shedding cycle. Cantwell (1975) made an attempt in this 
direction when investigating the turbulent wake of a circular cylinder at a Reynolds 
number of 140000. By using a flying hot-wire technique, and conditionally sampling 
the data on the basis of phase, he was able to  obtain a series of phase-averaged 
streamline patterns for the far wake for each stage of vortex shedding. However, 
Cantwell’s results provide very little information for the flow in the cavity where 
vortices are being formed. Using a similar idea, Perry & Watmuff ( 1  981) also made 
a study of turbulent wakes behind a three-dimensional bluff body. By propelling an 
air-bearing sled (to which the hot-wire probes were attached) along the centre line 
of the tunnel, a series of phase-averaged vector fields was obtained which aorre- 
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Caption for figures 1 (d-c) on p. 79. 

sponded to different parts of the vortex-shedding cycle. The results for the far wake 
were similar to the two-dimensional wakes, but again very little information was 
obtained in the near wake. 

The authors suspect that when the flow is non-turbulent, the instantaneous 
streamline patterns for each part of the vortex-shedding cycle will have the same 
qualitative features as the fully turbulent phase-averaged results. Some evidence for 
this is given in the present paper (see $2). 

Instantaneous streamline patterns have often been ignored in unsteady-flow 
studies and streaklines have been used more often. The relationship between instant- 
aneous streamlines and streaklines is extremely complex. Streaklines can be used to  
give an idea of where the vorticity resides in a flow field, but tell us very little about 
the surrounciing flow field and the entrainment processes. Instantaneous streamline 
patterns can be obtained photographically from short-time exposures of small 
particles such as aluminium which have been introduced into the flow. The motions 
of these particles give a field of short streaklines. It can be shown that over very 
short time inter\-als, streaklines, pathlines and instantaneous streamlines are 
identical. See for example Kline (1965). 

Of course, the above idea of obtaining instantaneous streamline patterns is not new. 
I n  fact, Nayler & Frazer (1917)  attempted this technique when investigating the 
vortex shedding behind a circular cylinder in a water channel. By introducing 
neutrally buoyant oil droplets (a mixture of carbon tetrachloride & xylene) into the 
water, a n d  by rccording the motion of the droplets on a cine film, Nnyler 8 Frazer 
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FIGURE 1 .  Flow in the near wake of a cylinder starting from rest. Observer moving with 
cylinder. Each picture obtained by exposing 40 consecutive frames from Prandtl’s movie. 
Authors’ interpretations also shown. Sequence of events begins a t  (a )  and continues to (f) .  
Non-dimensional time increment ( U , A t ) / D  2: 0.3 between each picture, where U ,  isthe free- 
stream velocity and L )  is the diameter of the cylinder. Cross-hatchings indicate instantaneous 
alleyways. 

were able to obtain a series of instantaneous streamline patterns a t  different parts 
of the vortex shedding cycle. However, their interpretation of the pattern violated 
some of the geometrical properties of critical points (see Perry & Fairlie 1974). 

The main objective of the pFesent paper is therefore to examine the properties of 
the instantaneous streamline and streakline patterns behind a circular cylinder 
during the process of vortex shedding. To obtain instantaneous streamlines, the 
authors decided to use the technique described earlier. This was achieved by using 
the movie produced under the direction of Prandtl in the 1920s (see Shapiro & 
Bergman 1962). This movie was produced under constant illumination (i.e. no 
strobing was applied) and contained flow -visualization experiments conducted in a 
water channel on flow past bodies of various geometries with small aluminium 
particles suspended on the free surface.t 

To obtain streakline patterns behind the cylinder, the present authors conducted 
the experiment in an open-circuit water channel using dye as an indicator. The 
cylinder used was spanned across the working section and was fully submerged in 
the water. The Reynolds number based on the diameter of the cylinder wits of the 
order of 100. 

t Over 200 frames of the movie corresponded to  one vortex-shedding cycle. 
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2. An interpretation of Prandtl’s movie using properties of critical points 
Prandt,l (see Shapiro & Bergman 1962) produced a movie of flow around bodies 

using aluminium particles on a free surface. Each frame of the movie was produced 
by an extremely short time exposure and no instantaneous streamlines can be seen. 
The authors therefore decided to expose 40 consecutive frames of the movie on one 
photographic plate. This process was repeated for various parts of the shedding 
cycle behind the bodies, I n  this way a series of instantaneous streamline pictures was 
obtained. Figure 1 shows the case for a cylinder starting from rest. Various salient 
features of the flow patterns become obvious. These are called critical points (i.e. 
points where the slopes of the instantaneous streamlines become indeterminate). 
These critical points have been classified by Perry & Fairlie (1974) but for the 
work described here, certain properties of these critical points and other flow 
pattern features are important. These properties are consequently summarized 
below. 

(i) Viscous critical points are points of zero vorticity. These occur only on the 
boundary where the no slip condition applies. From the equations of Perry & Fairlie 
(1974), i t  can be shown that if we expand in a Taylor series about the critical point 
in both space and time, then to first order, the critical point has the same properties 
as a steady critical point, but translates with uniform velocity relative to the 
boundary. To see a viscous critical point, an observer must be stationary relative 
to the boundary. Relative to any other observer, the critical point disappears. 

(ii) Inviscid critical points are singularities a t  the boundary where the no-slip 
condition has been relaxed. These can also be thought of as critical points within the 
fluid. Again, it can be shown from the equations of Perry & Fairlie (1974) that, to  
first order in a Taylor-series expansion about the critical point, all viscous terms 
cancel, even though the flow may be viscous elsewhere. For this reason, such critical 
points are referred t o  as inviscid critical points. Such a model is suitable for critical 
points away from boundaries. To first order in both space and time, inviscid critical 
points translate with uniform velocity equivalent t o  the velocity i& of the pressure 
maxima or minimat. If an observer is moving with this velocity, then relative to 
him, the critical points are located at the pressure maxima or minima. Relative to 
any other observer, however, these critical points will be displaced from the pressure 
maxima or minima. 

Using the pictures of figure 1, properties (i) and (ii), and the well-known fact that  
instantaneous streamlines, irrespective of whether they occur in steady or unsteady 
flow, must obey continuity, a simple model for the flow in the cavity is proposed for 
the steady-state oscillation. This proposed model is shown in figure 2. It should be 
pointed out that in two-dimensional incompressible flow the only critical points 
allowable are centres and saddles, otherwise continuity will be violated. Only the 
separatrices are shown.$ As shown in figures 1 (a,b), the cavity which forms during 
the starting-up process is closed and all the saddles are joined together. This is the 
classical picture of cavity flow. However, during the vortex-shedding process (see 

t In steady flow, pressure maxima and minima correspond with saddles and centres respect- 

$ I n  critical-point terminology, a separatrix is a streamline which leaves or terminates at  a 
ively. 

saddle. 
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( C )  

FIGURE 2. Proposed simple model for steady vortex shedding. Observer moving with the 
cylinder. Only separatrices shown. Sequence is from (a )  to (h ) .  

figures 1c-f), the cavity is open and the saddles are not necessarily joined by the 
separatrices, and instant ‘alleyways ’ of fluid penetrate the cavity. These ‘ alleyways ’ 
are shown in figure 1 by the cross-hatching. The formation of ‘alleyways’ can also 
be seen in the computer plots of Fromm & Harlow (1 963) and in the flow visualiza- 
tion of Taneda (1978), who also used the short-time exposure of aluminium particles 
to  obtain streamline patterns behind bodies such as circular cylinders, elliptical 
cylinders and flat plates. Unfortunately, he presented his results without. further 
interpretation. 

Flow behind bodies of other geometries such as an elliptical cylinder or a bluff 
plate follow the same general model. However, in the case of the plate, the separa- 
tion points on the body are fixed at  the sharp edges. Figure 3 shows a typical instant- 
aneous streamline pattern taken by Prandtl for the flow behind an elliptical cylinder 
at a Reynolds number (based on the major axis) of 250. This streamline pattern 
possesses the same general feature as that shown in figure 1 (d )  for a cylinder. 

Smits (1980) in conjunction with the present authors also performed a series of 
visual studies of the flow behind a two-dimensional bluff plate with sharp edges at  a 
Reynolds number of the order of 3400. The plate had an aspect ratio of 1.76 but 
spanned across the width af the tunnel. Figure 4 ( a )  shows a typical streakline (i.e. 
smoke) pattern. Although these are strcnklines, and the flow is turbulent with 
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FIGURE 3. Instantaneous streamlines behind an elliptiral cylinder. Rcynolds nninber b a w l  on 
the major axis = 250 (from Prandtl & 'I'ictjens (1934), figure 66). 

Caption for fignrrl 4 ( a )  011 p. 83. 
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( b )  

FIGURE 4. ( a )  Typical smoke pattein in the wake of a two-dimensional bluff plate. Ke)nolds 
number = 3400. Aspect ratio of the plate = 1.76, but spanned the width of the tunnel. ( b )  
Instantaneous streamline pattern corresponding to (a ) .  Septrlces are shon 11. S, saddle ; C, 
centre. 

associated three dimensionality, individual clumps of smoke have smeared out in the 
time exposure, giving a picture resembling the instantaneous Streamline pattern in 
figure 4 ( b ) .  At this higher Reynolds number, the basic mechanism of vortex shedding 
app‘ears to  be very similar to that of the low-Reynolds-number case shown in figure 3. 
Based on this result, and the results of Cantwell (1975), the authors believe that the 
proposed model given in figure 2 is valid irrespective of the Reynolds number. Of 
course, for high-Reynolds-number cases, the experimental data have to be sampled 
conditionally on the basis of phase. 

I n  all the cases considered so far (figures 1-4) the observer is stationary relative 
to the body. Therefore, critical points on the surface appear as critical points 
(property (i)). Also, since the flow immediately behind the body is inactive (i.e. the 
velocity is low), the critical points within the fluid are approximately in their correct 
positions (by property (ii)). However, further downstream ( 2  or 3 wavelengths), the 
eddies accelerate rapidly until they reach their final convection velocity. When this 
happens the centres and saddles are displaced from their correct positions (property 
(ii)). To a stationary observer, the centres and saddles will merge to approach ‘centre 
saddles’ where the separatrices join at an apex (point A in figure If). To see these 
critical points as steady, the observer must move with the convection velocity of the 
pressure maxima and minima, UY,. 

3. Properties of the far wake in relation to different moving observers 
The different streamline patterns as seen by different moving observers can also 

be illustrated if we use von KBrmBn’s (1912) stable vortex spacing (see also hlilne- 
Thomson 1968; Lamb 1945) to solve for the complex potential with the effect of the 
velocity of the observer included. The genelnibted stream fiuict ions Iclutire to different 
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( b )  
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(C)  

( d )  

Caption for figures 5 (a-d)  on facing page. 

observers are shown in figure 5 .  I n  figure 5 (a ) ,  the observer is moving faster than the 
free stream and faster than the eddies. Note that the saddles of the top eddies are 
above the eddies and are joined a t  the top. In  figure 5 ( b ) ,  the observer is moving 
with the free stream and faster than the eddies. The saddles for this case are a t  
infinity. Goldstein ( 1  965) erroneously reported that the pattern of figure 5 ( h )  cor- 
responds to the observer moving with the eddies. This error has been repeated in 
many textbooks. The figure caption explains various other cases shown. It should 
be noted that the centres (or vortices) do not move laterally - only the saddles do 
this. This is because the centres here are irregular; i.e. they are point vortices whioh 
possess infinite tangential velocity a t  their origins. Hence the motion of the observer 



Vortex slwdding behind blufj bodies 85 

(e) cf) 
FIGURE 5. Kbrm&n vortex street as seen by different observers. Let - V, be the velocity of eddies 
relative to free stream. V, is a positive number and positive velocity is from left t o  right. (a )  
Observer moving at  1.0 1; i.e. observer is moving faster than free stream and faster than eddies. 
( b )  Observer moving at  0 t i ,  i.e. observer is moving with the free stream but faster than the 
eddies. ( c )  Observer moving a t  -0.4 V,, i.e. observer is moving slower than free stream but 
faster than the eddies. ( d )  Observer moving at - 0.8 I;, i.e. observer is moving slower than free 
stream but faster than the eddies. This happens to give almost-connected separatrices. ( e )  
Observer moving a t  - 1.0 V,, i.e. observer is moving slower than free stream but moving with 
the eddies. (f) Observer moving at  - 2.0 b;, i.e. observer is moving slower than free stream and 
slower than the eddies. 

has no effect on their location but their shape is altered. The centres discussed by 
Perry & Fairlie (1974) are regular with finite vorticity. 

Figure 6 ( a )  shows the smoke pattern of a KBrmhn vortex street taken by 
Zdravkovich (1969) who introduced smoke close to the stagnation point of a 
cylinder. I n  incompressible flow, vorticity is generated only a t  solid boundaries 
and this vorticity resides with the fluid (see Lighthill 1963; Batchelor 1967). Hence 
dye or smoke in the form of streaklines which originate from the surface must 
indicate the position of vortex sheets. Of course, it should be noted that a t  low 
Reynolds number, vorticity diffuses considerably more rapidly than does dye or 
smoke. Thus vortex sheets will be much thicker than indicated by the dye traces. 
However, the dye will indicate the position of the sheets. I n  figure 6 (a ) ,  one can see 
that this smoke has aligned itself with the separatrices of the steady streamline 
pattern as given in figure 5(e).  It can also be seen that the smoke separatrices are 
approximately orthogonal a t  the saddles, hence they show that the flow is irrota- 
tional near the saddles. This can be deduced from the equations derived by Perry & 
Fairlie (1974) and also Perry, Lim & Chong (1980). 

It can be seen from figure 6 ( a )  that one of the separatrices is missing at  each of the 
saddle points. This is a consequence of the way the sheets of smoke are folded in the 
shedding process and is elaborated upon in $4. 

The K&rmBn vortex street can be observed to  occur in a variety of situations 
besides two-dimensional wake-flow. The authors produced a K&rm&n vortex 'jet '  
from an oscillating tube with R rectangular outlet of high aspect ratio (see figure 6b).  
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( b )  

FIGURE 6. (a )  Khrmhn vortex street behind a circular cylinder. Reynolds number based on the 
diameter 2: 50 (from Zdravkovich 1969). ( b )  KBrmBn-vortex-jet structure. Reynolds number 
based on the smallest side of the rectangular tube exit N 90. Tube outlet is recognizable on the 
left of the figure. 

The tube was oscillated in a sinusoidal mode using the technique of Perry & Lim 
(1978). Note that the eddies in figure 6 ( b )  are pointing in the opposite direction to 
that shown in figure 6 ( a )  for a cylinder. 

4. Dye experiments 
The authors also carried out some experiments in a water tunnel with a circular 

cylinder set across the working section. Positive and negative vorticity were coloured 
blue and red respectively. This was done by introducing blue dye on the upper 
surface of the cylinder a t  an angular position of approximately 80" from the front 
stagnation point. Similarly red dye was introduced on the lower surface. The cylinder 
was completely submerged in the water tunnel. Figure 7 (plate 1) shows such dye 
traces in a KBrmBn vortex street behind the cylinder. Generally, the indentations 
which form on the vortex sheet correspond with instantaneous alleyways. However, 
centres did not necessarily correspond with the roll-up of the vortex sheet, partly 
because the flow is unsteady and partly because many layers of dye and hence 
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To ‘starting vortices’ 

FIGURE 8. Schematic ‘threading diagram’ of vortex sheet in a KArmBn vortex street. 
The progressive folding of the sheet can be traced by following the arrows. 

vorticity are convected into the cavity, allowing centres to form within the cavity. 
Figure 7 shows these layers. 

It is well known that a streakline (dye in this case) can never be broken. It repre- 
sents a flexible barrier which fluid can never cross, even though, in the actual flow 
situation, it may be stretched and become so highly convoluted that the original 
vortex sheet may become unrecognizable as a continuous sheet. In  the present 
situation, the fluid entering the cavity via the alleyways is bounded on one side by 
the dye interface. On the next cycle the same applies to the next ‘body’ of fluid. 
As a result, the various ‘bodies’ of fluid within the cavity are recognizable and 
separated from each other by a dye interface. These ‘bodies’ of fluid form a queue 
and are successively stacked up one behind the other and then move in jumps to- 
wards the solid body, awaiting their turn to be ‘squeezed’ out of the cavity and 
carried away by a Kelvin-Helmholtz-like roll-up. Figure 8 presents a schematic 
‘ threading ’ diagram proposed by the present authors for this ‘ multiple-folding ’ 
process and shows that every eddy produced is ultimately interconnected with every 
other eddy. The two sets of vortex sheets intertwine with each other in the far wake. 
This ultimately forms a pattern as shown in figure 6 (a).  However, in this figure the 
individual layers of dye (or smoke) have been smeared out by diffusion. Gerrard 
(1978) also observed this ‘multiple-folding’ phenomenon and referred to it as 
‘fingers’. At Reynolds numbers beyond 140, he observed that these ‘fingers’ are 
sometimes absorbed into the vortices of opposing sign at  the opposite side of the 
wake. The authors did not observe this at  Reynolds number of SOT and the ‘thread- 
ing diagram’ shown in figure 8 would be modified at  higher Reynolds numbers. 
Nevertheless, the authors contend that the broad features of the instantaneous 
streamline patterns do not alter with Reynolds number (i.e. the model given in 
figure 2 is still applicable). Also Gerrard did not relate this ‘multiple-folding ’ pheno- 
menon to instantaneous streamline patterns. 

To establish a relationship between dye traces and instantaneous streamline 
patterns, the authors introduced aluminium particles into the flow and illuminated 
them with a sheet of laser light. Figure 9 (a )  shows the resulting instantaneous stream- 
lines together with dye, and figure 9 ( b )  shows the authors’ interpretation. As 
mentioned earlier, the centres which form in the cavity do not necessarily corre- 
spond with the roll-up of the vortex sheet. This is partly because of the vorticity 

t When this absorption did occur, it could always be attributed to  buoyancy of the dye; e.g. 
see figure 7 ( b ) .  
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(a)  

+- Indentation 

L 

FIGURE 9. (a)  Instanta.neous streamlines and dye traces (streaklines or vortex sheet,) behind 
circular cylinder. Reynolds number is of the order of 100. (6) Author’s interpretation of (a) .  
Cross-hatching indicates instantaneous alleyway. 

being convected into the cavity through multiple folding of the vortex sheet as 
shown in figure 8. Also, from such studies the authors conclude that the initial 
indent,ations in the dye correspond t o  the instantaneous alleyways. 

5. Discussion and conclusion 
It can be seen that the unsteady cavity behind a vortex-shedding cylinder is 

complex. Rather than a stagnant ‘pool’ of fluid, the cavity should be thought of as 
a region where vort,ex sheets arc undergoing cz multiple-folding process and where 
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each vortex shed is always ultimately connected baok to the cavity by its own 
‘umbilical cord’ or ‘thread’. This explains how vorticity is convected into the cavity. 
Viscous diffusion, although present, is not the basic mechanism. This would explain 
why the pattern is insensitive to Reynolds number. 

From the movie which Prandtl made on flow around bodies, a sequence of instant- 
aneous streamline patterns of the flow behind a ciroular cylinder was obtained. 
Interpretation of these streamline patterns at different stages of vortex shedding 
show that the classical picture of a closed cavity behind a body is true only in the 
time-averaged sense. However, the cavity is closed during the starting-up-process. 
Once vortex shedding begins, instantaneous ‘ alleyways ’ of fluid penetrate the 
cavity. 

Properties of the far wake have also been identified. If one moves at  the correct 
convection velocity the pattern becomes steady and the instantaneous streamline 
pattern corresponds to the streakline pattern. Given a sufficient time of development, 
the streakline pattern will align itself with the separatrices of the streamline pattern. 

The authors wish to acknowledge the financial assistance of the Australian 
Research Grants Committee, the National Energy Research, Development and 
Demonstration Council, and the Australian Institute of Nuclear Science and 
Engineering. 
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(b)  

FIGURE 7. (a)  Typical dye traces in a Karman vortex street behind a circular cylinder. (a) Close- 
up view of Karman vortex street near the cylinder. Blue dye corresponds to positive vorticity 
and red dye corresponds to negative vorticity. Reynolds number (based on the diameter of the 
cylinder) = 80. Blue dye at  the bottom is due to buoyancy. 
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